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ABSTRACT

We consider an unweighted conventional phased array and compare its perfor-
mance characteristics such as the array factor, half-power beamwidth, direc-
tivity, number of elements and side-lobe levels to a fractal array equivalent.
We show that the Cantor fractal set can be used to thin the array structure
in such a way as to consist of active radiating elements and inactive elements
the latter of which can be used for other functions. We demonstrate that the
conventional array ‘defocuses’ its energy for frequencies other than its design
frequency and behaves like a point source. On the other hand the fractal array
maintains its beamforming capability for various frequencies which signifies
that it has a multiband response. The fractal array is shown to be superior to
the conventional array except when it comes to the side-lobe level where the
conventional array results are better.
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Comparison of Conventional and Fractal Phased Arrays

Executive Summary

We consider an unweighted conventional phased array and compare its performance char-
acteristics such as the array factor, half-power beamwidth, directivity, number of elements
and side-lobe levels to a fractal array equivalent. We show that the Cantor fractal set
can be used to thin the array structure in such a way as to consist of active radiating
elements and inactive elements the latter of which can be used for other functions. We
demonstrate that the conventional array ‘defocuses’ its energy for frequencies other than
its design frequency and behaves like a point source. On the other hand the fractal array
maintains its beamforming capability for various frequencies which signifies that it has a
multiband response. The fractal array is shown to be superior to the conventional array
except when it comes to the side-lobe level where the conventional array results are better.

The theoretical results presented here can be expanded to planar and other types of
arrays. Most importantly, the approach can be readily verified experimentally by making
use of the Microwave Radar Branch XPAR II research facilities.
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1 Introduction

A fractal is a recursively generated object that has fractional dimension [1]-[3]. The study
of objects with fractal geometry in combination with electromagnetic theory is known
as fractal electrodynamics. Fractal electrodynamics is used in the investigation of a new
class of radiation, propagation and scattering problems. One of the most interesting
areas of research is concerned with antenna theory and design. The idea is to investigate
the possibility of improved antenna performance based on fractal objects as opposed to
the more traditional use of Euclidean geometries. Fractal geometries can be used in the
study of the radiation pattern of independent antennas or to examine the performance of
an ensemble of elements in a phased array. Kim and Jaggard [4] were one of the first to
report on a way to design low sidelobe arrays which was based on random fractals. Various
fractal designs have been used in the pursuit of antennas or arrays with high directivity
with varying success [5]-[7]. One promising performance characteristic of fractal arrays is
the ability to form a beam pattern for varying frequencies, ie, to have multiband response.
In this report we will examine a particular class of fractals known as the Cantor set. It
will be shown that the array factor f(θ) for varying frequencies for such an array still
focuses the radiating energy while a conventional linear array does not. Comparison is
also made of the directivity (D(θ)) half-power beamwidth (θH) and side-lobe level (SLL)
between the two array types. In both cases the array is isotropic which means that window
functions are unity for all radiating elements.

2 Conventional Linear Phased Arrays

Linear phased arrays have been analysed in some detail by many including the author
[8]-[9] and for this reason we will not dwell on the details here but only highlight the
essential results. A linear array generally has N equally spaced elements with uniform
excitations and symmetrical distributions for the magnitude amplitudes in the array, as
well as a constant inter-element phase shift α of radiating electromagnetic waves at angle
θ from the plane of the array-refer to Fig. 1. For an even and odd number of elements we
can express the array factor f(ψ) as,

f(ψ) = 2
N∑

m=1
am cos

[(
m − 1

2

)
ψ

]
(1)

when N is an even number of radiating elements (N = 2, 4, 6, ...) and

f(ψ) = a0 + 2
N∑

m=1
am cos [mψ] (2)

when N is an odd number of radiating elements (N = 1, 3, 5, ...). Here ψ ≡ ψ(θ) =
βd cos(θ) + α, β = 2π/λ; λ is the wavelength, d is the element spacing, α is the phase
factor, θ is the angle measured from the line of the array, am is the magnitude of the
amplitude for the mth element on either side of the array midpoint and a0 denotes the
amplitude of the centre element when N is odd. The coefficients am are the windows
of the array factor and there are many approaches that can be used for their derivation.
However, in this report we will only be concerned with unweighted array factors whereby
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Figure 1: Linear array with elements radiating at angle θ and phase-shift α. The inter-
element separation is d

all am = 1 in (1) and (2). This is done in order to facilitate a direct comparison with the
array factors of the fractal analogue as well as being simpler for experimental verification
of the theory presented here.

3 Fractal Linear Phased Arrays

Fractal array radiation patterns have been studied using generating algorithms that re-
cursively replicate a fundamental subarray structure or pattern of elements that are then
used in the beamforming process with the fractal dimension of such arrays being less than
one, d < 1. By considering an n = 1 fractal pattern to be the fundamental subarray to
be replicated and generated successively, higher orders in the generating function (n > 1)
can be used to construct an overall array with radiating elements either turned on or off
in a fractal manner that in turn determines the desired performance of the array. This
approach belongs to a special class of thinning arrays. In general, the array factor f(ψ(θ))
can be expressed in the form:

f(δ, ψ(θ)) =
N∏

n=1

g(δ, ψ(θ)) (3)

where g(.) represents the array factor of the fundamental subarray elements that are to
be expanded or iterated and ψ(θ) is defined above. In (3), n corresponds to the number of
iterations while δ is the scaling parameter or expansion factor that determines how large
the array becomes for each successive application of the generating fundamental subarray.
To investigate how a conventional linear array as represented by (1) and (2) compares with
its fractal equivalent, it is necessary to obtain a generating function g(δ, ψ(θ)) that self
replicates in a linear fashion (linear array) and where the fundamental subarray structure
comprising of radiating elements is obtained from (1) and (2). One fractal generator that
can be used in this instance is that of the Cantor fractal set - see Fig. 2. We make the
connection between this fractal behaviour and say (2) for a conventional array by noting
that we can choose appropriate elements to be turned on or off (or removed) from the
linear array. Hence if we chose N = 1, a0 = 0 and a1 = 1 in (2) we find that what remains
is two radiating elements represented by ‘1’ and a switched off element as represented by

2
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Figure 2: The Cantor fractal set is shown for the first n = 4 iterations. Each solid
line corresponds to a radiating element while the gaps in between the lines correspond to
switched off elements. The iterations here are in direct analogue to the results shown in
Table 1

‘0’, ie, the fundamental subarray consists of 101 elements and from (2) the generating
array factor for this fundamental subarray is

g(δ, ψ(θ)) = 2 cos(ψ(θ)) (4)

This expression represents the first iteration of the subarray and is the n = 1 term in the
Cantor fractal set. From the pattern multiplication theorem we find that higher orders in
n can be obtained by products of the general term

g(δ, ψ(θ)) = 2 cos(δn−1ψ(θ)) (5)

Given that the fundamental generating subarray has been chosen here to be of the form
‘101’ we select an expansion factor of δ = 3 for the Cantor set and by using (3) we then
have the fractal array factor1

f(3, ψ(θ)) = 2
N∏

n=1

cos(3n−1ψ(θ)) (6)

Equation (6) now represents the array factor for the nth generation or iteration in such
a way that each active element ‘1’ is replaced by ‘101’ and each inactive element ‘0’ is
replaced by ‘000’ for each subsequent iteration. Hence for n = 1 we have ‘101’ and for
n = 2 we obtain ‘101000101’ and so on as shown in Table 1. Notice that this behaviour
correlates with the Cantor fractal set as can be shown in Fig. 2. Suppose that in designing
the fractal or conventional array we chose a specific operating frequency f0 for the array.
Generally at this frequency we obtain the best performance from the array depending on
what specifications we are interested in. A conventional linear array is therefore expected
to focus most of its energy in a beam rather than radiate the field uniformly in all direc-
tions. On the other hand a fractal array is known to exhibit multiband characteristics for
frequencies other than just the design frequency f0:

fn = f0δ
−n ≡ 3−nf0 (7)

1Note that we can use a different subarray set to carry out this analysis instead of the ‘101’ radiating

elements as used here for example.
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Table 1: The element distribution for the fractal linear array

n element pattern active elements total elements

1 101 2 3

2 101000101 4 9

3 101000101000000000101000101 8 27

4 101000101000000000101000101
000000000000000000000000000
101000101000000000101000101 16 81

for each iteration of order n = 0, 1, 2, 3, ..., N − 1. Another parameter of interest for
comparing the fractal and conventional linear array is the directivity D(θ) that is obtained
from

D(θ) = 2
f2(π/2u)∫ 1

−1 f2(π/2u)du
(8)

where we define ψ = π/2u and u = cos(θ) and where,

f2(π/2u) =
N∏

n=1

cos

(
3n−1

2
πu

)
(9)

Substituting (9) into (8) we finally obtain the directivity for a linear Cantor fractal array
as a function of the angle θ:

D(θ) = 2N
N∏

n=1

cos2
(

3n−1

2
πu

)
(10)

Evidently the maximum directivity Dmax occurs when u = cos(π/2) = 0 hence we have
Dmax = D(0),

D(0) = 2N (11)

or DdB(0) = 3.01N in dB where N = 1, 2, 3, .... Finally it is worth noting that the nulls
of the fractal array can easily be calculated from the fact that

cos

(
3n−1

2
πu

)
= 0 (12)

with solutions given by

u
(N)
j = ±(2j − 1)(1/3)N−1 (13)

Thus the angles at which the nulls appear are now determined from

θ
(N)
j = cos−1

(
±(2j − 1)(1/3)N−1

)
(14)
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Figure 3: Plots showing the radiation response of fractal and conventional phased arrays
for a design frequency of f0=8.1 GHz
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Figure 4: Plots showing the radiation response of fractal and conventional phased arrays
for a frequency of f1=2.7 GHz

where j = 1, 2, 3, ..., 1/2(1+3N−1) since there are 1+3N−1 nulls for the array. It is also
important to check that such an array is indeed a fractal array. This can be determined by
considering the dimension2 d which for the array considered here must lie in the interval
0 ≤ d ≤ 1,

d =
log( δ+1

2 )

log(δ)
=

log(2)

log(3)
(15)

hence the dimension is indeed that of a fractal since d = 0.6309. Suppose that we consider
a linear array design such that the operating frequency is f0 = 8.1 GHz. Then for this fre-
quency the corresponding wavelength is λ0 = 0.037 m. Furthermore let the inter-element
spacing be d = λ0/4 and the phase shift between the elements be set to zero (α = 0)
for simplicity. We will compare a 16-element conventional array with its corresponding
fractal version. For the latter this means performing N = 4 iterations of the fundamental

2Not to be confused with the inter-element spacing d.

5



DSTO–TN–0913

0 25 50 75 100 125 150 175
Θ

0

0.2

0.4

0.6

0.8

1

f�
Ψ
�

(i) Fractal array

0 25 50 75 100 125 150 175
Θ

0.7

0.75

0.8

0.85

0.9

0.95

1

f�
Ψ
�

(ii) Conventional array

Figure 5: Plots showing the radiation response of fractal and conventional phased arrays
for a frequency of f2=0.9 GHz
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Figure 6: Plots showing the radiation response of fractal and conventional phased arrays
for a frequency of f3=0.3 GHz

subarray configuration ‘101’ as given in Table 1. Notice that in order to obtain 16 ac-
tive elements (as in the conventional array case) a total of 81 elements are generated by
the fractal iterations in which the majority are switched off with 16 elements left in the
radiating mode. Hence, by separating these active left-over elements at multiples of the
quarter-wavelength separations between two such elements we can obtain an array factor
which can be compared to that of a conventional linear array. Also it is worth noting that
while these inactive elements are not needed for the beamforming itself, they can be used
for other purposes and this is especially true for the planar version of a fractal array to
which these results can be easily extended. Returning to the design frequency of f0 = 8.1
GHz we notice that the fractal array operates at another three frequencies aside from the
design frequency, ie, as given by (7):

f0 = 30f0 = 8.1 GHz (16)

f1 = 3−1f0 = 2.7 GHz (17)

f2 = 3−2f0 = 0.9 GHz (18)

6
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Table 2: Conventional linear phased array

f (GHz) D (dB) θH(degrees) SLL (dB)

8.1 9.12 17.00 -13.14
2.7 4.63 53.50 -13.55
0.9 0.89 - -∞
0.3 0.10 - -∞

Table 3: Fractal linear phased array

f (GHz) D (dB) θH(degrees) SLL (dB)

8.1 12.04 4.00 -5.45
2.7 9.03 12.95 -5.44
0.9 6.02 24.50 -5.44
0.3 3.01 80.45 -∞

f3 = 3−3f0 = 0.3 GHz (19)

The array factor is compared for both conventional and fractal arrays for these different
frequencies as shown in Figs 3-6. As can be seen, the fractal version still forms a beam
pattern not only for the design frequency f0 but also for the other frequencies as well
showing that such an approach does in fact display multiband behaviour. Conversely, for
the conventional array, as the frequency changes from the design frequency it behaves more
like a point source and loses its beam focusing ability. Finally, as can be seen in Table 2
and Table 3, the fractal array has greater directivity and smaller half-power beamwidth θH

compared to the conventional linear array. However the side-lobe levels (SLL) are greater
for the fractal array than they are for the conventional array but we are reminded that
this can be reversed if appropriate weighting functions are calculated. On the other hand,
it may be possible to turn on some of the inactive elements as shown in Table 1, even
if only momentarily, so that the side-lobes are reduced for a particular scan mode before
reverting back to the original scan configuration.

4 Conclusion

We have presented one possible class of fractals, namely the Cantor set, in the study of
an unweighted fractal linear array and have compared it with a conventional unweighted
array described by a sinc(z) function. In most performance characteristics the fractal array
shows better response compared to a conventional array. The method can be extended to
2D array structures whereby element ‘thinning’ based on fractal iterations might improve
some aspects of performance for such array structures.

7
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